NEWS for pqR version 2.15.0 (2013-06-20)

NEWS pqR News

CHANGES IN VERSION RELEASED 2013-06-20
INTRODUCTION:

e This is the nearly-initial public release of pqR (there were early unpublicised releases,
which this release updates with bug fixes, etc). It is based on R-2.15.0, distributed
by the R Core Team, but improves on it in many ways, mostly ways that speed it up,
but also by implementing some new features and fixing some bugs.

e One notable improvement is that for systems with multiple processors or processor
cores, pqR is able to do some numeric computations in parallel with other operations
of the interpreter, and with other numeric computations.

e This section documents changes in pgR from R-2.15.0 that are of direct interest
to users. For changes from earlier version of R to R-2.15.0, see the ONEWS,
OONEWS, and OOONEWS files. Changes of little interest to users, such as code
cleanups and internal details on performance improvements, are documented in
the file MODS, which relates these changes to branches in the code repository at
github.com/radfordneal /pqR.

e Note that for compatibility with R’s version system, pqR presently uses the same
version number, 2.15.0, as the version of R on which it is based. This allows checks
for feature availability to continue to work. This scheme will likely change in the
future. Releases of pqR with the same version number are distinguished by release
date.

FEATURE CHANGES:

e A new primitive function get_rm has been added, which removes a variable while
returning the value it had when removed. See help(get_rm) for details, and how
this can sometimes improve efficiency of R functions.

e An enhanced version of the Rprofmem function for profiling allocation of vectors has
been implemented, that can display more information, and can output to the terminal,
allowing the source of allocations to more easily be determined. Also, Rprofmen is
now always accessible (not requiring the -—enable-memory-profiling configuration
option). Its overhead when not in use is negligible.

1

NEWS

The new version allows records of memory allocation to be output to the terminal,
where their position relative to other output can be informative (this is the default for
the new Rprofmemt variant). More identifying information, including type, number
of elements, and hexadecimal address, can also be output. For more details on these
and other changes, see help (Rprofmem).

A new primitive function, pnamedcnt, has been added, that prints the NAMED-
CNT/NAMED count for an R object, which is helpful in tracking when objects will
have to be duplicated. For details, see help(pnamedcnt).

The tracemem function is defunct. What exactly it was supposed to do in R-2.15.0
was unclear, and optimizations in pqR make it even less clear what it should do. The
bit in object headers that was used to implement it has been put to a better use
in pqR. The --enable-memory-profiling configuration option used to enable it no
longer exists.

The retracemenm function remains for compatibility (doing nothing). The Rprofmemt
and pnamedcnt functions described above provide alternative ways of gaining insight
into memory allocation behaviour.

Some options that can be set by arguments to the R command can now also
be set with environment variables, specifically, the values of R_DEBUGGER,
R_DEBUGGER_ARGS, and R_HELPERS give the default when --debugger, —-
debugger-args, and --helpers are not specified on the command line. This feature
is useful when using a shell file or Makefile that contains R commands that one would
rather not have to modify.

INSTALLATION AND TESTING:

The procedure for compiling and installing from source is largely unchanged from
R-2.15.0. In particular, the final result is a program called "R”, not "pgqR”, though of
course you can provide a link to it called "pqR”. Note that (as for R-2.15.0) it is not
necessary to do an "install” after "make” — one can just run bin/R in the directory
where you did "make”. This may be convenient if you wish to try out pqR along with
your current version of R.

Testing of pqR has so far been done only on Linux/Unix systems, not on Windows or
Mac systems. There is no specific reason to believe that it will not work on Windows
or Mac systems, but until tests have been done, trying to use it on these systems is
not recommended.

This release contains the versions of the standard and recommended packages that
were released with R-2.15.0. Newer versions may or may not be compatible (same as
for R-2.15.0).

It is intended that this release will be fully compatible with R-2.15.0, but you will
need to recompile any packages (other that those with only R code) that you had
installed for R-2.15.0, and any other C code you use with R, since the format of
internal data structures has changed (see below).

New configuration options relating to helper threads and to matrix multiplication now
exist. For details, see doc/R-admin.html (or R-admin.pdf), or run ./configure --
help.

In particular, the -—disable-helper-threads option to configure will remove sup-
port for helper threads. Use of this option is advised if you know that multiple
processors or processor cores will not be available, or if you know that the C compiler

NEWS

used does not support OpenMP 3.0 or 3.1 (which is used in the implementation of
the helpers package).

Including -DENABLE_ISNAN_TRICK in CFLAGS will speed up checks for NA and NaN
on machines on which it works. It works on Intel processors (verified both empirically
and by consulting Intel documentation). It does not work on SPARC machines.

The --enable-memory-profiling option to configure no longer exists. In pqR, the
Rprofmem function is always enabled, and the tracemem function is defunct. (See
discussion above.)

When installing from source, the output of configure now displays whether standard
and recommended packages will be byte compiled.

The tests of random number generation run with make check-all now set the ran-
dom number seed explicitly. Previously, the random number seed was set from the
time and process ID, with the result that these tests would occasionally fail non-
deterministically, when by chance one of the p-values obtained was below the thresh-
old used. (Any such failure should now occur consistently, rather than appearing to
be due to a non-deterministic bug.)

Note that (as in R-2.15.0) the output of make check-all for the boot package in-
cludes many warning messages regarding a non-integer argument, and when byte
compilation is enabled, these messages identify the wrong function call as the source.
This appears to have no wider implications, and can be ignored.

Testing of the "xz” compression method is now done with try, so that failure will be
tolerated on machines that don’t have enough memory for these tests.

The details of how valgrind is used have changed. See the source file ‘memory.c’.

INTERNAL STRUCTURES AND APPLICATION PROGRAM INTER-
FACE:

The internal structure of an object has changed, in ways that should be compatible
with R-2.15.0, but which do require re-compilation. The flags in the object header
for DEBUG, RSTEP, and TRACE now exist only for non-vector objects, which is sufficient
for their present use (now that tracemen is defunct).

The sizes of objects have changed in some cases (though not most). For a 32-bit
configuration, the size of a cons cell increases from 28 bytes to 32 bytes; for a 64-bit
configuration, the size of a cons cell remains at 56 bytes. For a 32-bit configuration,
the size of a vector of one double remains at 32 bytes; for a 64-bit configuration (with
8-byte alignment), the size of a vector of one double remains at 48 bytes.

Note that the actual amount of memory occupied by an object depends on the set of
node classes defined (which may be tuned). There is no longer a separate node class
for cons cells and zero-length vectors (as in R-2.15.0) — instead, cons cells share a
node class with whatever vectors also fit in that node class.

The old two-bit NAMED field of an object is now a three-bit NAMEDCNT field, to
allow for a better attempt at reference counting. Versions of the the NAMED and
SET_NAMED macros are still defined for compatibility. See the R-ints manual for
details.

Setting the length of a vector to something less than its allocated length using
SETLENGTH is deprecated. The LENGTH field is used for memory allocation track-
ing by the garbage collector (as is also the case in R-2.15.0), so setting it to the wrong
value may cause problems. (Setting the length to more than the allocated length is
of course even worse.)

NEWS

PERFORMANCE IMPROVEMENTS:

e Many detailed improvements have been made that reduce general interpretive over-
head and speed up particular functions. Only some of these improvements are noted
below.

e Numerical computations can now be performed in parallel with each other and with
interpretation of R code, by using “helper threads”, on machines with multiple pro-
cessors or multiple processor cores. When the output of one such computation is
used as the input to another computation, these computations can often be done in
parallel, with the output of one task being “pipelined” to the other task. Note that
these parallel execution facilities do not require any changes to user code — only that
helper threads be enabled with the —-helpers option to the command starting pqR.
See help(helpers) for details.

However, helper threads are not used for operations that are done within the inter-
preter for byte-compiled code or that are done in primitive functions invoked by the
byte-code interpreter.

This facility is still undergoing rapid development. Additional documentation on
which operations may be done in parallel will be forthcoming.

e A better attempt at counting how many "names” an object has is now made, which
reduces how often objects are duplicated unnecessarily. This change is ongoing, with
further improvements and documentation forthcoming.

e Several primitive functions that can generate integer sequences — ”:”; seq.int, seq_len,
and seq_along — will now sometimes not generate an actual sequence, but rather just
a description of its start and end points. This is not visible to users, but is used to
speed up several operations.

In particular, "for” loops such as for (i in 1:1000000) ... are now done without
actually allocating a vector to hold the sequence. This saves both space and time.
Also, a subscript such as 101:200 for a vector or as the first subscript for a matrix is
now (often) handled without actually creating a vector of indexes, saving both time
and space.

However, the above performance improvements are not effective in compiled code.

e Matrix multiplications with the %*% operator are now much faster when the operation
is a vector dot product, a vector-matrix product, a matrix-vector product, or more
generally when the sum of the numbers of rows and columns in the result is not much
less than their product. This improvement results from the elimination of a costly
check for NA/NaN elements in the operands before doing the multiply. There is no
need for this check if the supplied BLAS is used. If a BLAS that does not properly
handle NaN is supplied, the %*% operator will still handle NaN properly if the new
library of matrix multiply routines is used for %#% instead of the BLAS. See the next
two items for more relevant details.

e A new library of matrix multiply routines is provided, which is guaranteed to handle
NA/NaN correctly, and which supports pipelined computation with helper threads.
Whether this library or the BLAS routines are used for %*% is controlled by the
mat_mult_with_BLAS option. The default is to not use the BLAS, but the --
enable-mat-mult-with-BLAS-by-default configuration option will change this. See
help ("%*%") for details.

e The BLAS routines supplied with R were modified to improve the performance of the
routines DGEMM (matrix-matrix multiply) and DGEMV (matrix-vector multiply).
Also, proper propagation of NaN, Inf, etc. is now always done in these routines.

NEWS

This speeds up the %*% operator in R, when the supplied BLAS is used for matrix
multiplications, and speeds up other matrix operations that call these BLAS routines,
if the BLAS used is the one supplied.

The low-level routines for generation of uniform random numbers have been improved.
(These routines are also used for higher-level functions such as rnorm.)

The previous code copied the seed back and forth to .Random.seed for every call of a
random number generation function, which is rather time consuming given that for
the default generator .Random.seed is 625 integers long. It also allocated new space
for .Random.seed every time. Now, .Random.seed is used without copying, except
when the generator is user-supplied.

The previous code had imposed an unnecessary limit on the length of a seed for a
user-supplied random number generator, which has now been removed.

The any and all primitives have been substantially sped up for large vectors.

Also, expressions such as all(v>0) and any(is.na(v)), where v is a real vector,
avoid computing and storing a logical vector, instead computing the result of any or
all without this intermediate, looking at only as much of v as is needed to determine
the result. However, this improvement is not effective in compiled code.

When sum is applied to many mathematical functions of one vector argument, for
example sum(log(v)), the sum is performed as the function is computed, without a
vector being allocated to hold the function values. However, this improvement is not
effective in compiled code.

The handling of power operations has been improved (primarily for powers of reals,
but slightly affecting powers of integers too). In particular, scalar powers of 2, 1, 0,
and -1, are handled specially to avoid general power operations in these cases.
Extending lists and character vectors by assigning to an index past the end, and
deleting list items by assigning NULL have been sped up substantially.

The speed of the transpose (t) function has been improved, when applied to real,
integer, and logical matrices.

The cbind and rbind functions have been greatly sped up for large objects.

The ¢ and unlist functions have been sped up by a bit in simple cases, and by a lot
in some situations involving names.

The matrix function has been greatly sped up, in many cases.

Extraction of subsets of vectors or matrices (eg, v[100:200] or M[1:100,101:110])
has been sped up substantially.

Logical operations and relational operators have been sped up in simple cases. Rela-
tional operators have also been substantially sped up for long vectors.

Access via the $ operator to lists, pairlists, and environments has been sped up.
Existing code for handling special cases of ”[” in which there is only one scalar index
was replaced by cleaner code that handles more cases. The old code handled only
integer and real vectors, and only positive indexes. The new code handles all atomic
vectors (logical, integer, real, complex, raw, and string), and positive or negative
indexes that are not out of bounds.

Many unary and binary primitive functions are now usually called using a faster
internal interface that does not allocate nodes for a pairlist of evaluated arguments.
This change substantially speeds up some programs.

Lookup of some builtin/special function symbols (eg, ”+” and "if”) has been sped up

NEWS

by allowing fast bypass of non-global environments that do not contain (and have
never contained) one of these symbols.

Some binary and unary arithmetic operations have been sped up by, when possible,
using the space holding one of the operands to hold the result, rather than allocating
new space. Though primarily a speed improvement, for very long vectors avoiding
this allocation could avoid running out of space.

Some speedup has been obtained by using new internal C functions for performing
exact or partial string matches in the interpreter.

BUG FIXES:

The ”debug” facility has been fixed. Its behaviour for if, while, repeat, and for state-
ments when the inner statement was or was not one with curly brackets had made
no sense. The fixed behaviour is now documented in help(debug). (I reported this
bug and how to fix it to the R Core Team in July 2012, but the bug is still present
in R-3.0.1, released May 2013.)
Fixed a bug in sum, where overflow is allowed (and not detected) where overflow can
actually be avoided. For example:

> v<-c(3L,1000000000L:1010000000L ,-(1000000000L: 1010000000L))

> sum(v)

[1] 4629
Also fixed a related bug in mean, applied to an integer vector, which would arise only
on a system where a long double is no bigger than a double.
Fixed diag so that it returns a matrix when passed a list of elements to put on the
diagonal.
Fixed a bug that could lead to mis-identification of the direction of stack growth on a
non-Windows system, causing stack overflow to not be detected, and a segmentation
fault to occur. (I also reported this bug and how to fix it to the R Core Team, who
included a fix in R-2.15.2.)

Fixed a bug where, for example, log(base=4) returned the natural log of 4, rather
than signalling an error.

The documentation on what MARGIN arguments are allowed for apply has been clar-
ified, and checks for validity added. The call

> apply(array(1:24,c(2,3,4)),-3,sum)
now produces correct results (the same as when MARGIN is 1:2).

Fixed a bug in which Im(matrix(complex(0),3,4)) returned a matrix of zero ele-
ments rather than a matrix of NA elements.

Fixed a bug where more than six warning messages at startup would overwrite random
memory, causing garbage output and perhaps arbitrarily bizarre behaviour.

Fixed a bug where LC_PAPER was not correctly set at startup.

Fixed gc.time, which was producing grossly incorrect values for user and system time.
Now check for bad arguments for .rowSums, .colSums, .rowMeans, and .rowMeans
(would previously segfault if n*p too big).

Fixed a bug where excess warning messages may be produced on conversion to RAW.
For instance:

> as.raw(1e40)
[1] oo

NEWS 7

Warning messages:

1: NAs introduced by coercion

2: out-of-range values treated as O in coercion to raw
Now, only the second warning message is produced.

e A bug has been fixed in which rbind would not handle non-vector objects such as
function closures, whereas cbind did handle them, and both were documented to do
S0.

e Fixed a bug in numeric_deriv in stats/src/nls.c, where it was not duplicating when it
should, as illustrated below:

> x <= 5; y <= 2; f <~ function (y) x
> numericDeriv(f(y),"y")
(11 5
attr(,"gradient")
[,1]
[1,] 0
> x
[11 5
attr(,"gradient")
[,1]
[1,] 0
e Fixed a bug in vapply illustrated by the following;:
X<-1list (456)
f<-function(a)X
A<-1list(1,2)
B<-vapply(A,f,list(0))
print (B)
X[[1]11[1]1<-444
print(B)
After the fix, the values in B are no long changed by the assignment to X. Similar bugs
in mapply, eapply, and rapply have also been fixed. I reported these bugs to r-devel,
and (different) fixes are in R-3.0.0 and later versions.
e Fixed a but in rep.int illustrated by the following:
a<-list(1,2)
b<-rep.int(a,c(2,2))
b[[111[1]1<-9
print(al[1]11)
e Fixed a bug in mget, illustrated by the following code:
a <- numeric(1)
x <- mget("a",as.environment (1))
print(x)
al1l] <=9
print (x)
e Fixed bugs that the R Core Team fixed (differently) for R-2.15.3, illustrated by the
following:
a <- list(c(1,2),c(3,4))
b <- 1ist(1,2,3)
b[2:3] <- a

NEWS

b[[2]11[2] <- 99
print(al[1]][2])

a <- list(1+1,1+1)
b <- list(1,1,1,1)
b[1:4] <- a
b[[111[1] <- 1
print(b[2:4])
e Fixed a bug illustrated by the following:
> library(compiler)

> foo <- function(x,y) UseMethod("foo")

> foo.numeric <- function(x,y) "numeric"

> foo.default <- function(x,y) "default"

> testi <- function () foo(x=NULL,2)

> testc <- cmpfun (function () foo(x=NULL,2))
> testi()

[1] "default"

> testc()

[1] "numeric"
e Fixed several bugs that produced wrong results such as the following;:
a<-1list(c(1,2),c(3,4),c(5,6))
b<-a[2:3]
al[2]1[2]1<-9
print(b[[11][2])
I reported this to r-devel, and a (different) fix is in R-3.0.0 and later versions.

e Fixed bugs reported on r-devel by Justin Talbot, Jan 2013 (also fixed, differently, in
R-2.15.3), illustrated by the following:

a <- list(1)

b <= (all1]] <- a)
print(b)

a <- list(x=1)

b <- (a$x <- a)
print(b)

e Fixed svd so that it will not return a list with NULL elements. This matches the
behaviour of La.svd.

e Fixed (by a kludge, not a proper fix) a bug in the "tre” package for regular expression
matching (eg, in sub), which shows up when WCHAR_MAX doesn’t fit in an ”int”. The
kludge reduces WCHAR_MAX to fit, but really the ”int” variables ought to be bigger.
(This problem showed up on a Raspberry Pi running Raspbian.)

e Fixed a minor error-reporting bug with (1:2) :integer(0) and similar expressions.

e Fixed a small error-reporting bug with 7$”, illustrated by the following output:

> options(warnPartialMatchDollar=TRUE)
> pl <- pairlist(abc=1,def=2)

> pl$ab

[1] 1

Warning message:

In pl$ab : partial match of 'ab' to "'

NEWS 9

o Fixed documentation error in R-admin regarding the
--disable-byte-compiled-packages configuration option, and changed the
DESCRIPTION file for the recommended mgev package to respect this option.

	NEWS

